Digital multiplexers

- In TDM a group of analog signals are sampled sequentially in time at a common sampling rate and then multiplexed for transmission over a common line
- In this section the multiplexing of digital signals at different rates will be considered
- Multiplexing of digital signals is accomplished by using a bit-by bit interleaving

Digital multiplexers

- A selector switch is used sequentially takes a bit from each incoming line, then applies it to a high speed common line
- At the receiving end of the system the output of this common line is separated out into its low speed individual components and then delivered to their destination

Digital multiplexers block diagram

Digital multiplexers groupsgroup 1

- Digital multiplexers are divided into two major groups
- 1. One group is used to take relatively low bit-rate data streams originating from computers and multiplex them for TDM transmission over the public switched telephone network. This group requires the use of modulators and demodulators

Digital multiplexers groupsgroup 2

- The second group forms part of the data transmission services
- These multiplexers constitute a digital hierarchy that time division multiplexes low rate bit streams into much higher rate bit streams

Digital signal zero (DS0) hierarchy

- The DS0 standard takes one voice signal, then samples it at a sampling frequency of 8 kHz/s, the samples are converted into PCM using 8-bit quantizer
- This means that the DS0 produces data at a rate of 64 kbit/s

Digital signal one (DS1) hierarchy

- DS1 is the first level of the hierarchy
- DS1 combines 24 DS0 bit streams to obtain a digital signal one at 1.544 Mb/s
- The bandwidth of the DS1 is computed from the following equation
- $R_B = number\ of\ bits \times sampling\ rate$ $R_B = (8 \times 24 + 1) \times 8000 = 1.544\ Mbit/second$

Digital signal two (DS2) hierarchy

- DS2 is the second level multiplexer
- DS2 combines 4 DS1 bit streams to obtain a digital signal one at 6.312 Mb/s
- The bandwidth of the DS2 is computed from the following equation

$$R_{B} = 4 \times DS1 \left(\frac{49}{48}\right) \left(1 + \frac{0.335}{288}\right)$$

$$R_{B} = 4 \times 1.544 \left(\frac{49}{48}\right) \left(1 + \frac{0.335}{288}\right) = 6.312 \text{ Mbit / second}$$

Digital signal three (DS3) hierarchy

- DS3 is the third level multiplexer
- DS3 combines 7 DS2 bit streams to obtain a digital signal one at 44.736 Mb/s

Digital signal four (DS4) hierarchy

- DS4 is the fourth level multiplexer
- DS4 combines 6 DS3 bit streams to obtain a digital signal one at 274.176 Mb/s

Digital signal five (DS5) hierarchy

- DS5 is the fifth level multiplexer
- DS5 combines 2 DS4 bit streams to obtain a digital signal one at 560.16 Mb/s

Problems involved in the design of a digital multiplexer

- Synchronization between receiver and receiver
- The multiplexed signal must include some form of framing so that its individual components can be identified at the receiver
- The multiplexer has to handle small variations in the bit rates of the incoming digital signals

A speech signal has a total duration of 10 s. It is sampled at the rate of 8 kHz and then encoded. The signal-to-(quantization) noise ratio is required to be 40 dB. Calculate the minimum storage capacity needed to accommodate this digitized speech signal.

The minimum number of bits per sample is 7 for a signal-to-quantization noise ratio of 40 dB. Hence,

The number of samples
$$= 8000 \times 10$$

in a duration of $10s$ $= 8 \times 10^4$ samples

The minimum storage is therefore

$$= 7 \times 8 \times 10^4$$

= 5.6 x 10⁵
= 560 kbits

A PCM system uses a uniform quantizer followed by a 7-bit binary encoder. The bit rate of the system is equal to 50×10^6 b/s.

- (a) What is the maximum message bandwidth for which the system operates satisfactorily?
- (b) Determine the output signal-to-(quantization) noise ratio when a full-load sinusoidal modulating wave of frequency 1 MHz is applied to the input.
 - (a) Let the message bandwidth be W. Then, sampling the message signal at its Nyquist rate, and using an R-bit code to represent each sample of the message signal, we find that the bit duration is

$$T_b = \frac{T_s}{R} = \frac{1}{2WR}$$

The bit rate is

$$\frac{1}{T_b} = 2WR$$

The maximum value of message bandwidth is therefore

$$W_{\text{max}} = \frac{50 \times 10^6}{2 \times 7}$$
$$= 3.57 \times 10^6 \text{ Hz}$$

Virtues, limitations and modifications of PCM

- Why someone use digital communications (PCM) even though it introduces complications in the design of communication system?
- PCM system has many advantages
- some of these advantages are

Advantages of PCM

- Robustness to channel noise
- Efficient regeneration of the coded signal along the transmission path
- Efficient exchange of increased channel bandwidth for improved signal to noise ratio, obey an exponential law

Advantages of PCM

- A uniform format for the transmission of different kinds of base band signals, hence their integration with other forms of digital data in a common network
- Comparative ease with which message sources may be dropped or reinserted in time division multiplex system
- Secure communication through the use of special modulation schemes or encryption