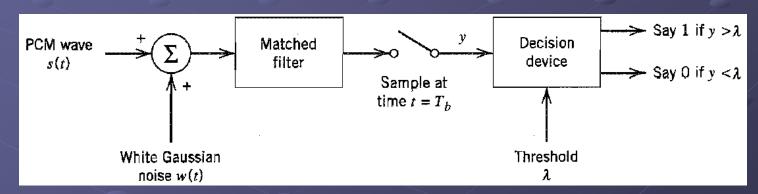

Error rate due to noise

- In this section, an expression for the probability of error will be derived
- The analysis technique, will be demonstrated on a binary PCM based on polar NRZ signaling
- The channel noise is modeled as additive white Gaussian noise w(t) of zero mean and power spectral density $\frac{N_0}{2}$

Bit error rate

• The receiver of the communication system can be modeled as shown below


• The signaling interval will be $0 \le t \le T_b$, where T_b is the bit duration

Bit error rate

- The received signal can be given by $x(t) = \begin{cases} +A + w(t), & symbol \ 1 \ was \ sent \\ -A + w(t), & symbol \ 0 \ was \ sent \end{cases}$
- It is assumed that the receiver has acquired knowledge of the starting and ending times of each transmitted pulse
- The receiver has a prior knowledge of the pulse shape, but not the pulse polarity

Receiver model

 The structure of the receiver used to perform this decision making process is shown below

Possible errors

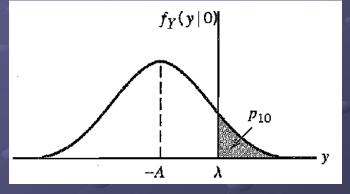
- When the receiver detects a bit there are two possible kinds of error
 - Symbol 1 is chosen when a 0 was actually transmitted; we refer to this error as an error of the first kind
 - Symbol 0 is chosen when a 1 was actually transmitted; we refer to this error as an error of the second kind

- To determine the average probability of error, each of the above two situations will be considered separately
- If symbol 0 was sent then, the received signal is

$$x(t) = -A + w(t), 0 \le t \le T_b$$

The matched filter output will be given by

$$y = \frac{1}{T_b} \int_0^{T_b} x(t)dt$$
$$y = -A + \frac{1}{T_b} \int_0^{T_b} w(t)dt = -A$$


 The matched filter output represents a random variable Y

- This random variable is a Gaussian distributed variable with a mean of -A
- The variance of Y is $\sigma^2_Y = \frac{N_0}{2T_b}$
- The conditional probability density function the random variable Y, given that symbol 0 was sent, is therefore

$$f_Y(y|0) = \frac{1}{\sqrt{\pi N_0/T_b}} e^{\left(-\frac{(y+A)^2}{N_0/T_b}\right)}$$

The probability density function is plotted

as shown below

• To compute the conditional probability, p_{10} , of error that symbol 0 was sent, we need to find the area between λ and ∞

In mathematical notations

$$p_{10} = P(y > \lambda | symbol \ 0 \ was \ sent$$

$$p_{10} = \int_{\lambda}^{\infty} f_y(y|0) dy$$

$$p_{10} = \frac{1}{\sqrt{\pi N_0 / T_b}} \int_{\lambda}^{\infty} e^{\left(-\frac{(y+A)^2}{N_0 / T_b}\right)} dy$$

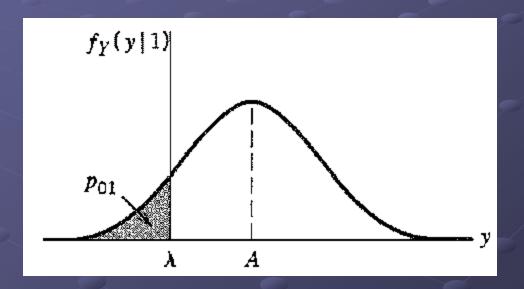
The integral

$$\operatorname{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_{\lambda}^{\infty} e^{(-z^2)} dz$$

 Is known as the complementary error function which can be solved by numerical integration methods By letting $z = \frac{y+A}{\sqrt{N_0/T_b}}$, $dy = \sqrt{N_0/T_b} \, dz$, p_{10} became

$$p_{10} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-z^2} dz$$

$$\left(\frac{A+\lambda}{\sqrt{N_0/T_b}}\right)$$


$$p_{10} = \frac{1}{2} \operatorname{erfc}\left(\frac{A+\lambda}{\sqrt{N_0/T_b}}\right)$$

By using the same procedure, if symbol 1 is transmitted, then the conditional probability density function of Y, given that symbol 1 was sent is given

$$f_Y(y|1) = \frac{1}{\sqrt{\pi N_0/T_b}} e^{\left(-\frac{(y-A)^2}{N_0/T_b}\right)}$$

Which is plotted in the next slide

• The probability density function f(Y|1) is plotted as shown below

 The probability of error that symbol 1 is sent and received bit is mistakenly read as 0 is given by

$$p_{01} = \int_{-\infty}^{\lambda} f_y(y|1) dy$$

$$p_{10} = \frac{1}{\sqrt{\pi N_0 / T_b}} \int_{-\infty}^{\lambda} e^{\left(-\frac{(y-A)^2}{N_0 / T_b}\right)} dy$$

• By letting
$$z=\frac{A-y}{\sqrt{N_0/T_b}},\,dy=-\sqrt{N_0/T_b}\,dz,\,p_{10}$$
 became
$$p_{10}=-\frac{1}{\sqrt{\pi}}\int\limits_{\infty}^{A-\lambda}e^{-z^2}\,dz=\frac{1}{\sqrt{\pi}}\int\limits_{A-\lambda}^{\infty}e^{-z^2}\,dz$$

$$p_{10}=\frac{1}{2}erfc\left(\frac{A-\lambda}{\sqrt{N_0/T_b}}\right)$$

Expression for the average probability of error

$$p_{10} = \frac{1}{2} erfc \left(\frac{A - \lambda}{\sqrt{N_0/T_b}} \right)$$

The average probability of error P_e is given by

$$\begin{split} P_e &= P_0 P_{10} + P_1 P_{01} \\ P_e &= \frac{P_0}{2} erfc \left(\frac{A+\lambda}{\sqrt{N_0/T_b}}\right) + \frac{P_1}{2} erfc \left(\frac{A-\lambda}{\sqrt{N_0/T_b}}\right) \end{split}$$

• In order to find the value of λ which minimizes the average probability of error we need to derive P_e with respect to λ and then equate to zero as

$$\frac{\partial P_e}{\partial \lambda} = 0$$

From math's point of view (Leibniz's rule)

$$\frac{\partial \operatorname{erfc}(u)}{\partial u} = -\frac{1}{\sqrt{\pi}}e^{-u^2}$$

Optimum value of the threshold λ value

• If we apply the previous rule to P_e , then we may have the following equations

$$\frac{\partial P_e}{\partial \lambda} = -\frac{1}{\sqrt{\pi N_0/T_b}} \frac{p_0}{2} e^{-\frac{(A+\lambda)^2}{N_0/T_b}} + \frac{1}{\sqrt{\pi N_0/T_b}} \frac{p_1}{2} e^{-\frac{(A-\lambda)^2}{N_0/T_b}} = 0$$

 By solving the previous equation we may have

$$\frac{p_0}{p_1} = \frac{e^{-\frac{(A-\lambda)^2}{N_0/T_b}}}{e^{-\frac{(A+\lambda)^2}{N_0/T_b}}} = \frac{f_y(y|1)}{f_y(y|0)}$$

 From the previous equation, we may have the following expression for the optimum threshold point

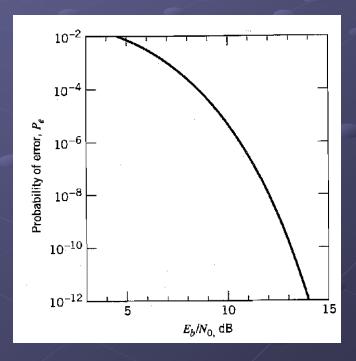
$$\lambda_{opt} = \frac{N_0}{4AT_b} ln \left(\frac{p_0}{p_1}\right)$$

• If both symbols 0 and 1 occurs equally in the bit stream, then $p_0 = p_1 = \frac{1}{2}$, then

1.
$$\lambda_{opt} = 0$$

2.
$$P_{e} = \frac{1}{2} \operatorname{erfc} \left(\frac{A}{\sqrt{N_{0}/T_{b}}} \right)$$

$$= \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{A^{2}}{N_{0}/T_{b}}} \right)$$


$$= \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{A^{2}T_{b}}{N_{0}}} \right)$$

$$= \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{E_{b}}{N_{0}}} \right)$$

Average probability of error vs $\frac{E_b}{N_0}$

 A plot of the average probability of error as a function of the signal to noise energy is

shown below

- As it can be seen from the previous figure, the average probability of error decreases exponential as the signal to noise energy is increased
- For large values of the signal to noise energy the complementary error function can be approximated as $\frac{\exp(-E_b/N_0)}{P} = \frac{\exp(-E_b/N_0)}{P}$

Example 1

4.7 A binary PCM system using polar NRZ signaling operates just above the error threshold with an average probability of error equal to 10⁻⁶. Suppose that the signaling rate is doubled. Find the new value of the average probability of error. You may use Table A6.6 to evaluate the complementary error function.

Solution

In a binary PCM system, with NRZ signaling, the average probability of error is

$$P_e = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{E_b}{N_0}} \right)$$

The signal energy per bit is

$$E_b = A^2 T_b$$

where A is the pulse amplitude and T_b is the bit (pulse) duration. If the signaling rate is doubled, the bit duration T_b is reduced by half. Correspondingly, E_b is reduced by half.

Let $u = \sqrt{E_b/N_0}$. We may then set

$$P_e = 10^{-6} = \frac{1}{2} \text{ erfc(u)}$$

Solving for u, we get

$$u = 3.3$$

When the signaling rate is doubled, the new value of P is

$$P_{e}^{'} = \frac{1}{2} \operatorname{erfc} \left(\frac{u}{\sqrt{2}} \right)$$
$$= \frac{1}{2} \operatorname{erfc}(2.33)$$
$$= 10^{-3}.$$

Example 2

- 4.8 A continuous-time signal is sampled and then transmitted as a PCM signal. The random variable at the input of the decision device in the receiver has a variance of 0.01 volts².
 - (a) Assuming the use of polar NRZ signaling, determine the pulse amplitude that must be transmitted for the average error rate not to exceed 1 bit in 10⁸ bits.
 - (b) If the added presence of interference causes the error rate to increase to 1 bit in 106 bits, what is the variance of the interference?

The average probability of error is given by $P_e = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{E_b}{N_0}} \right)$ where $E_b = A^2 T_b$,

We can rewrite
$$P_e = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{A^2 T_b}{N_0}} \right) = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{A^2}{\frac{N_0}{T_b}}} \right)$$

Since $\sigma = \sqrt{\frac{N_0}{2T_b}}$ the above expression for the average probability of error can be expressed as $P_e = \frac{1}{2} \operatorname{erfc} \left(\frac{A}{\sqrt{2}\sigma} \right)$

- Since P_e is very small we can approximate it by $P_e = \frac{1}{2u\sqrt{\pi}}e^{-u^2}$
- For $P_e = 1 \times 10^{-8}$ we have u = 3.97
- From the last equation in the previous slide we have $u = \frac{A}{\sqrt{2}\sigma}$
- If $\sigma^2 = 0.01 volt^2 \Rightarrow \sigma = 0.1 volt$
- $3.97 = \frac{A}{0.01\sqrt{2}} \Rightarrow A = 0.561$

Let σ_T denote the combined variance due to noise and inter symbol interference which means $\sigma_T^2 = \sigma_{ISI}^2 + \sigma_{AWGN}^2$

The new value for the average probability of error is

$$P_e = \frac{1}{2} \operatorname{erfc} \left(\frac{A}{\sigma_T \sqrt{2}} \right) = 1 \times 10^{-6}$$

From the erfc table we have $\frac{A}{\sigma_T\sqrt{2}} = 3.36$

$$\sigma_T = \frac{A}{u_T\sqrt{2}} = \frac{0.561}{3.36\sqrt{2}} = 0.1181 \text{ volt}$$

- But $\sigma_T^2 = \sigma_{ISI}^2 + \sigma_{AWGN}^2 \Rightarrow \sigma_{ISI}^2 = \sigma_T^2 \sigma_{AWGN}^2$
- $\sigma_{ISI}^2 = 0.0139 0.01 = 0.0039 \ volt^2$

Example 3

Consider that NRZ binary pulses are transmitted along a cable that attenuates the signal power by 3 dB (from transmitter to receiver). The pulses are coherently detected at the receiver, and the data rate is 56 kbit/s. Assume Gaussian noise with $N_0 = 10^{-6}$ Watt/Hz. What is the minimum amount of power needed at the transmitter in order to maintain a bit-error probability of $P_B = 10^{-3}$?

 Signaling with NRZ pulses represents an example of antipodal signaling, we can use

$$P_e = \frac{1}{2} erfc \left(\sqrt{\frac{E_b}{N_0}} \right)$$

$$1 \times 10^{-3} = \frac{1}{2} erfc \left(\sqrt{\frac{A^2 \frac{1}{56000}}{10^{-6}}} \right)$$

Using the erfc(x) table we find

$$\sqrt{\frac{A^2 \frac{1}{56000}}{10^{-6}}} = 2.18$$
$$A^2 = 0.266$$

• With 3-dB power loss the power at the transmitting end of the cable would be twice the power at the receiving terminal, this means that $P_{tx} = 2P_{rx} = 0.532$ watt