

- Whenever both bits are changed simultaneously, 180 degree phase-shift occurs.
- At 180 phase-shift, the amplitude of the transmitted signal changes very rapidly costing amplitude fluctuation.
- This signal may be distorted when is passed through the filter or nonlinear amplifier.

Original Signal

Filtered signal

- To solve the amplitude fluctuation problem, we propose the offset QPSK.
- Offset QPSK delay the data in quadrature component by T/2 seconds (half of symbol).
- Now, no way that both bits can change at the same time.

 In the offset QPSK, the phase of the signal can change by ±90 or 0 degree only while in the QPSK the phase of the signal can change by ±180 ±90 or 0 degree.

Offset QPSK

Possible paths for switching between the message points in (a) QPSK and (b) offset QPSK.

- Bandwidths of the offset QPSK and the regular QPSK is the same.
- From signal constellation we have that

$$P_e \approx \operatorname{erfc}\left(\sqrt{\frac{E}{2N_0}}\right)$$

 Which is exactly the same as the regular QPSK.

π/4-shifted QPSK

 Try to reduce amplitude fluctuation by switching between 2 signal constellation

$\pi/4$ -shifted QPSK

 As the result, the phase of the signal can be changed in order of ±π/4 or ±3π/4

$\pi/4$ -shifted QPSK

• Since the phase of the next will be varied in order of $\pm \pi/4$ and $\pm 3\pi/4$, we can designed the differential $\pi/4$ -shifted QPSK as given below

Gray-Encoded Input Data	Phase Change in radians		
00	+π/4		
01	+3π/4		
11	-3π/4		
10	-π/4		

$\pi/4$ -shifted QPSK:00101001

Step	Initial phase	Input Dibit	Phase change	Transmitted phase
1	π/4	00	π/4	π/2
2	π/2	10	-π/4	$\pi/4$
3	π/4	10	-π/4	0
4	0	01	3π/4	3π/4

$\pi/4$ -shifted QPSK

$\pi/4$ -shifted QPSK

Since we only measure the phase different between adjacent symbols, no phase information is necessary. Hence, noncoherent receiver can be used.

Block diagram of the $\pi/4$ -shifted DQPSK detector.

$\pi/4$ -shifted QPSK

 Illustrating the possibility of phase angles wrapping around the positive real axis.

• At a moment, there are M possible symbol values being sent for M different phase values, $\theta_i = 2(i-1)\pi/M$

$$s_i(t) = \sqrt{\frac{2E}{T}} \cos\left(2\pi f_c t + \frac{2\pi}{M}(i-1)\right), \qquad i = 1, 2, \dots, M$$

- Signal-space diagram for octa phase-shift keying (i.e., M = 8). The decision boundaries are shown as dashed lines.
- Signal-space diagram illustrating the application of the union bound for octa phase shift keying.

Probability of errors

$$\therefore d_{12} = d_{18} = 2\sqrt{E}\sin(\pi/M)$$

$$P_e \approx \operatorname{erfc}\left(\sqrt{\frac{E}{N_0}}\sin(\pi/M)\right); \quad M \ge 4$$

M-ary PSK

Power Spectra (M-array)

$$S_{PSK}(f) = 2E\operatorname{sinc}^{2}(Tf)$$

$$= 2E_{b} \log_{2} M \operatorname{sinc}^{2}(T_{b} f \log_{2} M)$$

■ M=2, we have

$$S_{BPSK}(f) = 2E_b \operatorname{sinc}^2(T_b f)$$

• Power spectra of *M*-ary PSK signals for M = 2, 4, 8.

- Bandwidth efficiency:
 - We only consider the bandwidth of the main lobe (or null-to-null bandwidth)

$$B = \frac{2}{T} = \frac{2}{T_b \log_2 M} = \frac{2R_b}{\log_2 M}$$

- Where B is the bandwidth of the transmitted data
- Bandwidth efficiency of M-ary PSK is given by

$$\rho = \frac{R_b}{B} = \frac{R_b}{2R_b} \log_2 M = 0.5 \log_2 M$$

M-ary QAM

- QAM = Quadrature Amplitude Modulation
- Both Amplitude and phase of carrier change according to the transmitted symbol, m_i

$$s_i(t) = \sqrt{\frac{2E_0}{T}} a_i \cos(2\pi f_c t) - \sqrt{\frac{2E_0}{T}} b_i \sin(2\pi f_c t); \quad 0 < t \le T$$

where a_i and b_i are integers, E_0 is the energy of the signal with the lowest amplitude

M-ary QAM

Again, we have

$$\phi_1(t) = \sqrt{\frac{2}{T}} \cos 2\pi f_c t \quad ; 0 < t \le T$$

$$\phi_2(t) = \sqrt{\frac{2}{T}} \sin 2\pi f_c t \quad ; 0 < t \le T$$

as the basis functions

There are two QAM constellations, square constellation and rectangular constellation

M-ary QAM

- QAM square Constellation
 - Having even number of bits per symbol, denoted by 2n
 - M=L x L possible values
 - Denoting $L = \sqrt{M}$

16-QAM

$$[a_i, b_i] = \begin{bmatrix} (-3,3) & (-1,3) & (1,3) & (3,3) \\ (-3,1) & (-1,1) & (1,1) & (3,1) \\ (-3,-1) & (-1,-1) & (1,-1) & (3,-1) \\ (-3,-3) & (-1,-3) & (1,-3) & (3,-3) \end{bmatrix}$$

L-ary, 4-PAM

QAM Probability of error

- Calculation of Probability of errors
 - Since both basis functions are orthogonal, we can treat the 16-QAM as combination of two 4-ary PAM systems.
 - For each system, the probability of error is given by

$$P_{e}' = \left(1 - \frac{1}{L}\right) erfc \left(\frac{d}{2\sqrt{N_0}}\right) = \left(1 - \frac{1}{\sqrt{M}}\right) erfc \left(\sqrt{\frac{E_0}{N_0}}\right)$$

16-QAM Probability of error

A symbol will be received correctly if data transmitted on both 4-ary PAM systems are received correctly. Hence, we have

$$P_{c}(symbol) = (1 - P_{e}')^{2}$$

Probability of symbol error is given by

$$P_e(symbol) = 1 - P_c(symbol) = 1 - (1 - P'_e)^2$$
$$= 1 - 1 + 2P'_e - (P'_e)^2 \approx 2P'_e$$

16-QAM Probability of error

Hence, we have

$$P_e(symbol) = 2\left(1 - \frac{1}{\sqrt{M}}\right) erfc\left(\sqrt{\frac{E_0}{N_0}}\right)$$

But because average energy is given by

$$E_{av} = 2 \left[\frac{2E_0}{L} \sum_{i=1}^{L/2} (2i-1)^2 \right] = \frac{2(M-1)E_0}{3}$$

We have

$$P_e(symbol) = 2\left(1 - \frac{1}{\sqrt{M}}\right) erfc\left(\sqrt{\frac{3E_{av}}{2(M-1)N_0}}\right)$$