1/ 25

2/ 25

'JV"'l’ & V{'Z'—V\w C\J',-

5/ 25

6/ 25

7/ 25

Record types

* Arecord is a heterogeneous aggregate of
data elements in which individual elements
are identified by names

* Introduced by Cobol in 60’s

Ada Var %Ie)g Records SE

type shape is (circle, triangle, recta
type colors is (red green, blue)
type 1ii_g_gre (form: shape) Is
record Loney oG Laon

filled: boolean; ' 1 =
color colors E —-? |
when circle => \)

radius: float;
when triangle=>
left-side: integer;
right-side: integer;
angle: float;
, when rectangle =>
side-T: integer;
< side-2: integer;

\end case;
end record:

Figure_1 : Figure;
Figure_1:=(filled=>true, color=>blue, form=>rectangle, side_1=>12, side_2=>3);

9/ 25

Union Types

« May store different type values at different
times during program execution

* Fortran:
INTEGER X
REAL Y
EQUIVALENCE(X,Y)

C Union

union number{ int x; float y;} ; /

number value: N
void main(){ e
value.x = 100: V) (:(’:4"
cout<<value.x<<” ‘<<value.y; -
value.y = 100.0; |
cout<<endl<<value.x<<” ‘<<value.y;
}
visual C++ output: 8 I <
100 1.4013e-043 ¢ ~ner
/{120403456 100
‘J/ﬂ/rk-\/;_-

10 / 25

11/ 25

Union and Type Checking
union un{int x; float y;};
Int a;

float b; 5% -
un D; oy | O
D.x = 10; -

a = D.x; //valid
b = D.x: //valid after coercion

KU
b = Dy, /[meaningless value ends in b (type error not detected)

// This makes the language less strongly types

-—#

12 / 25

Pointers

* Pointer variables have a range of values that

consist of memory addresses and a special
value, nill, indicating that the pointer cannot be

used to reference any object
* Two basic operations on pointers
JReferencing: produces the value of the
pointeras P + 2

Dereferencing: produces the value in the
location the pointer points to as in *P + 2

» C provides more operations on pointers

13/ 25

Pointers in PLI

The first language to provide pointers

A pointer can point to an object of any type
POINTER P; INTEGER X; FLOAT Y;

P = addr(X);
P = addr(Y); xr~ ¥

More flexible ?

Makes static type_checking of a pointer
dereference impossible

14 / 25

Dangling Pointer Problem

* A pointer that contains the address of a
dynamic variable that has been deallocated

» Reduces reliability since accessing mistakingly
the deallocated location through the pointer
yields invalid data

G~

)!()P:?

15/ 25

Dangling Pointer Example

If (...
Int *p;
r\./\./.hile(...){ G\e{
Int X; F X
L p=&X;
}

// p Is dangling between end of while and end of If
// accessing *p results in a logical error
Cudd e Y p

16 / 25

Dangling Pointer Example

Int * p1=new Int;
int * p2=p; 5 :,/j
delete p1; F

// p2 becomes dangling

Tombstone Solution

Use an inermediate pointer, called tombstone, for each
dynamic variable. —

The pointer points to tombstone and the tobstone points
to the dynamic variable.

When the Dynamic variable is deallocated the
intermediate pointer remains but it is assigned NULL
value indicating that the dynamic vaiable no longer
exists.

Any reference to a pointer pointing to NULL tomstone is
detected as an error

Requires extra memory to store the tombstone and
requires an extra memory access to reach the dynamic

variable

17 /| 25

Key-lock Solution

A key value (int) i1s added to the pointer and a
lock value (int) Is added to the dynamic variable

In oder for the pointer to access a dynamic
variable its key value must be equal to the lock
value of the dynamic variable. A run-time error
occurs If they do not match

Locks must be maintained through out execution

Requires extra time to compare key and lock
values for each access to the dynamic variable

18 / 25

19 / 25

Lost Object Problem

* An allocated dynamic object that is no longer
accessable by the program

» Also known as garbage or memory leak
problem since the lost object Is allocated
memory and it is not being used

» Example
Int *p; int sum=0;
while (1) {) Q
p=new Int; —
[' cin>>"p; ‘—}
sum += *p;
S

Y}

20 / 25

EXxpressions

Side Effect Problem

A side effect of a function occurs when it
changes the value of one of its parameters or
changes the value of a global variable

A side effect of an operator occurs when this
operator changes the value of one of its
operands

Side effect is considered a problem since the
value of an expression might be dependent on
the order in which the operands are evaluated

This might result in expressions that produce
one value under one compiler and produce
another value under another compiler

21 / 25

C language Examples

* +, %, /, %, >, <, ... do not have side effects

+ A + B returns the same value for
L=>R evaluation: load A, load B, add
R—>L evaluation: load B, load A, add

e ++ - = -= +=__.. do have side effects

. returns true for L>R
ﬁ_’evaluatio and false for R->L evaluation
~

<3

22 [25

23 [/ 25

Function Example

inta =5; — L
int () (F 3 b
Nl A

return 3; /
VIf L R

void main(){

cout<<a+f(); '*--—J(WC(

}

The output will be either 8 or 20 depending on the order
of evaluation of the operands of + operation

24 [25

Suggested Solutiont

* Language designer disallows functional
side effects by stating rules such as:

- No operator changes the value of its
operand(S)

- No function changes the value of one of
its parameters or the value of a global
variable

e Too restrictive

Suggested Solution 2

« Stating In language definition that
operands are to be evaluated in a fixed

order; left to right or right to left.

» Restricts the compiler ability to perform
some opt'Lmizations For example:

QfLZ‘“X*L R4 () + x

cannot be transformed into

2*f(a)+X
T

25 [/ 25

