1/ 33

2/ 33

3/ 33

4/ 33

Strings in Ruby

» Web site www.ruby-lang.org
» \Was used In first implementation of twitter
before moving to Scala

» Ranked number 8 by www.langpop.com
after C, Java, php, JavaScript, C++, Shell,
Python and more popular than objective-

C, C#, ...

5/ 33

Ruby Strings

Strings are objects that belong to String class

>> \n\t\\". length 5

B

>>_abc”.public methodsd

N—

H*JJ, 1"”, ‘iS“, |’.ﬁ<_l'.ﬁ o ==l‘.£ . h'.[]JJ, l‘.ﬁ[]=ﬁl‘., o
downcase” “downcase"’ ..., Insert”, .
“‘each_byte’, replace reverse” ”reverse!”,

More than 140 methods
“reverse!” imperative method and changes the string

‘reverse” applicative method (the string is not changed)

Ruby Strings are Mutable **

Strings can be modified >>y = Xx.dup

>> x=(festiny’) __:; . @ . “TESTING’
{__ o
l l "b'L -

‘testing” >>y.downcase!
>> Yy=X #x and y reference the same string “testing”
‘testing’ >>y

>> x.upcase! “testing”
"TESTING’ >>X J

>>y "TESTING”

"TESTING”

7/ 33

Ruby Strings Comparison

>> g1 = “/apple’;) >> 81 <82

"apple” true

>> 82 = ‘f_;esting? >> 81 >=g2

‘testing” false e —(
>> 81 == SZ(_J >> 81 <=> g2

false -1

>> g1 I= SZ(J >> g2 <=> g1

true 1

>> HX” <=> “X”

0

8/ 33

String Indexing and Modification

>> S = “§b9”<‘) >> S J
‘abc” “Atg‘c\:_”/ﬁ |
>> S[0] >> S[1] = thJQJ
97
>> S[-1] >> S (J
99 "Atomic’
>> S[100] >>5[0] =7B #\B/
il 66
>> S[0] = 65 >>S)
~—

65 “‘Btomic’

9 /33

Substrings

>> G = repla 6) >>5[1,100] J
‘replace” / ‘eplace”
>> SL2,§] Q) >> §[0,2] =" QJ
vla’ D—
>> G[2,1] (J >> G f)
P “Elace;.”
>> §[2..-1] >> $[3..-1] = "naria
place’ ‘naria
>>35[10,10] >>S J
\n_"/ ‘planarig’
Jac, kton

>>S

‘plankton”

10/ 33

Evaluation Inside Strings
>> X = 10()

10 # { .,l_.__}

>>y = "twenty” QJ

“twenty”

>>s.=“x=,y+y=” J

X = 1(3, y +y =twentytwenty” , wiic X

>> g = "string methods:@ab”.methodsb”.length

896

11/ 33

String Append

>> g = “just’

jUSt \L \L

>> s << festing” <s<'this

v

“Justtestingthis”

12 / 33

Non Primitive Types: Enumeration

 All of the possible values, which are
symbolic constants, are enumerated in the
definition

o C# example L - \

enum days {sat,sun,mon, tue, wed, fri};
days d1, d2;

d1=sat;

13 / 33

Enum Type Design Issues

* |s a literal constant allowed to appear in more
than one type definition? If yes, how is the type
of an occurrence of that literal in the program

type checked?
dYes In Ada)(— @ -
. ~—/ /
dNo in C and C++
‘enum days {sat,sun,mon, tue, wed, fri};

enum week_end {fri,sat};
* Are enumerated values coerced to integer?

\——*I_—_-——

d YesinCand C++:sat+1=1

~

Q Ng in C# d

Arr__'c_;_ly Type

A homogenous aggregate of data elements In
which the individual element is identified by its
position in the aggregate relative to the first
element

Array Type Design Issues

16 / 33

In_gex Notation

©

[
 Two options for subscript
() Ada, PLI, Fortran X[X (13
[] C-based languages 4

* () notation is motivated by the similarity between
functions and arrays.

ray name: element index - element value

" h___’/ "
 sum=sum+B(l) is less readable since B can be an

array or a function
« |t also requires more work by the compiler

————

17 / 33

Index Type

» C-based languages indeces are always
Integers

» Pascal and_Ada indeces can be integers,
characters, enumerated (ordinal types)

< \ \
Ce (- LLLC Ks

18 / 33

Run-time Checking of Index Range

+ C, C++, Perl, Fortran do not specify range
Checklng) of subscripts

int X[100];
Q([.{]=... /I executes even if J>99
» Good for execution time
- Bad for reliability
» Java, Pascal, ML, C# do range checking

19 / 33

Array Initialization

« C and C++ allow initializing arrays at
declaration

« Pascal does not

20 / 33

Array Operations

* \What are the operations, if any, that
operate on arrays

» Ada provides assignment, concatenation,
equality and inequality operations
* Fortran 95: i,:, transpose, vector product

21/ 33

APL

* Provides many operations

O V: reverses the elements of vector V
O M: reverses the columns of matrix M
< M: reverses the rows of matrix M

© M: transposes matrix M ~

+ M: Inverts matrix M M

D

* APL requires a special keyboard

-___.__ﬁ_-

22 [33

Jagged Arrays

* A rectangular array is a multidimensional
array in which all of the rows have the
same number of elements and all of the
rows have the same number of elements
and so on

* A Jagged array Iis a multidimensional array
IN which rows have different size, this also
applies to columns and other dimensions

« C# supports both kinds

23 [/ 33

C# Example

bool [][] X = new bool[2][]
X[0] = new bool[2]; : l

X[1] = new bool[1]; sl %‘th
X[O][0] = true;

X[0][1] = false;
X[1][0] = true;

S_lL(;eS 24 / 33
* An array slice Is a substructure of the array

» Often languages that provide slices allow
operating on the slices as a single unit

* Fortran 95 example
Integer vector(1:10), mat(1:3, 1:3), cube(1:3, 1:3, 1:4)

vector(3:6) is a 4-element array and a slice of vector 3. C
mat(1:3, 2) refers to the second column in mat
mat(3,1:3) refers to the third row of mat lvxﬂ_\k 5

cube(1:3,1:3,’ could be assigned to mat

vector(2:10:2) is a one dimensional array consisting of second, fourth, sixth,
eight'th an th elements of vector

Associative Arrays

Unordered collection of data elements that are indexed
by an equal number of values called keys

Both keys and data values are stored in the array

In Perl associative arrays are called hashes. Every hash
variable name begins with %

%salaries=("ahmad”=>900, “jamal’=>400, “sami"=>500);

$salaries{"ahmad”}=900;

The size of the hash table is dynamic

delete $salaries{‘jamal’};

If (exists $salaries{*sami™}) ...

Each operator is used to loop over hash elements

25 [/ 33

26 [33

Array categories

Based on index range and storage allocation:
» Static arrays

* Fixed stack-dynamic arrays

» stack-dynamic arrays

« Stack-dynamic arrays

* Heap-dynamic arrays

27 | 33

Static Arrays

Subscript ranges are statically bound
Allocation before run-time

Global arrays in C

Efficient for execution time

28 [/ 33

Fixed stack-dynamic arrays

Subscript ranges are statically bound
Memory Allocation during run-time
Stored on run-time stack

Local array in a C function

More memory efficient than static arrays

29 [/ 33

Stack-dynamic arrays

Subscript ranges are dynamically bound

Allocation during run-time when declaration is
elaborated

Once allocated, array size stays fixed
Ada example
Get(Xx);
Declare
A: array[1..x] of integer;
begin

end;
Stored on run-time stack
More flexible

Fixed heap-dynamic array

Binding of subscript range and storage
when the user requests them rather than
at elaboration time

Storage is allocated in heap

Once allocated memory the size does not
change

Dynamic arrays in C++ using new and
delete operations

30/ 33

31/ 33

Heap-dynamic arrays

Allocation during run-time

Size can change any number of times during
execution

C# example
ArrayList X=new ArrayList();
X.Add(elem); // extend array and store elem at end
Perl example

@X=(2,5,18);
push(@X, 15, 20);
Array becomes (2, 5, 18, 15, 20)

Array Implementation

* |n a statement X[J]= ... the compiler

replaces X[J] with a code to compute its
address

* Assuming a one-dimensional array index
starts form O:
address(X[i]) = address(X[0])+i*element_size

 The + and * operations need to be

performed during run-time. Less efficient
than variables

32/ 33

33/ 33

Implementation of matrixes

A matrix can be stored in row major, as in most
languages, or as a column major, as in Fortran

Given matrix X[10][20] and assuming row and
column numbers start from 0, and row-major
ordering Is used.:

Address(X][i][j]) = address(X[0][0]) + (I * 20 + j)*element_size
The 3 arithmetic operations are performed
during execution

This explains why defining a C function
f(int X[10][]){...} is invalid

