GSM 2G Voice Sokhps

3GUMTS Volc 2Mhps

46 LTE Voice over ip 1Gbps 250 Mbps DL UL

AM 188 / 188 Noontes Comitive Rado

COMMUNICATIONS AND SIGNALS PROCESSING

Department of Communication
An Najah University
2014/2015

Introduction

- What this course is about
- Brief overview of the Course
- General Info
- Chapter 1: Introduction to communications

Textbook and/or References

- An Introduction to Analog and Digital Communications, Simon Haykin, 2nd Edition, 2007
- Communication System Engineering, J.G. Proakis and M. Salehi, 2nd Edition
- Modern Digital and Analog Communication Systems, B.P. Lathi, Oxford University Press, 1998, Third Edition
- Digital and Analog Communication Systems, Leon coach, 2001,6th edition
- Communication system, S.Haykin, John Wily & Sons, 2001, Fourth edition
- Principles of Communications, Rodger Ziemer, William Tranter, 2008, 6th edition

Prerequisites

- Maths
 - Engineering mathematics, such as:
 - Trigonometry, series, integration/ differentiation, etc.
 - □ Probability, random variables and statistics , such as:
 - Gaussian and uniform distributions, noise, autocorrelation, power spectrum, etc.
- Primary Prerequisites courses
 - □ Systems & signal analysis
 - Fourier series/transform, transfer function, sampling, filtering, etc.

Course Contents

- Mathematical representation of message signals (Review)
- Amplitude and angle modulation techniques:
 - Amplitude modulation
 - Double sideband, single sideband modulation
 - Vestigial sideband modulation
 - Frequency modulation
- Super heterodyne receivers and Phase locked loops
- Noise in amplitude and frequency modulation system
- Introduction to digital communication techniques
- Frequency division multiplexing, sampling theorem

Course Objectives

- Understanding the mathematical representation of massage signals
- To learn the analysis and synthesis of amplitude and angle modulation systems
- Learning the concepts of time and frequency division multiplexing
- Ability to implement some communication systems

Learning Outcomes and Competences

- Ability to use mathematics (Fourier transform, calculus, special mathematical functions) to analyze analog communication systems
- Ability to design simple analog AM, FM transmitters and receivers
- Study the performance of various AM and FM modulation schemes under noise
- Ability to use simulation tools such as MATLAB and workbench to simulate analog modulation techniques

GENERAL INFO

Contact information and office hours

Email: ahmed.masri@najah.edu

Office hours: Check the table infront of my office

"To understand a science it is necessary to know its history" — Auguste Comte (1798–1857)

Historical review

- ➤ Early history of communication 1
 - 1799 Alessandro Volta invented electric battery
 - 1837 Samuel Morse demonstrated telegraph and 1844 first telegraph line (Washington-Baltimore) became operational

- ➤ Early history of wireless communication 2
 - 1831 Faraday demonstrates electromagnetic induction
 - o J. Maxwell (1831-79): theory of electromagnetic Fields, wave equations (1864)
 - H. Hertz (1857-94): demonstrates with an experiment the wave character of electrical transmission through space (1888, in Karlsruhe, Germany, at the location of today's University of Karlsruhe)

- ➤ Early history of wireless communication 3
 - o 1895: Guglielmo Marconi
 - first demonstration of wireless telegraphy (digital!)
 - long wave transmission, high transmission power necessary (> 200kw)
 - 1907: Commercial transatlantic connections
 - huge base stations(30 100m high antennas)

- ➤ Early history of wireless communication 4
 - 1915: Wireless voice transmission (New York San Francisco)
 - 1920: Discovery of short waves by Marconi
 - reflection at the ionosphere
 - smaller sender and receiver, possible due to the invention of the vacuum tube (1906, Lee DeForest and Robert von Lieben)
 - o 1926: Train-phone on the line Hamburg Berlin
 - wires parallel to the train track

- ➤ Early history of wireless communication 5
 - 1928 many TV broadcast trials (across Atlantic, color TV, TV news)
 - 1933 Frequency modulation (E. H. Armstrong)
 - 1958 A-Netz in Germany
 - analog, 160MHz, connection setup only from the mobile station, no handover, 80% coverage, 1971 11000 customers
 - o1972 B-Netz in Germany
 - analog, 160MHz, connection setup from the fixed network too (but location of the mobile station has to be known)

- ➤ Early history of wireless communication 6
 - 1979 NMT at 450MHz (Scandinavian countries)
 - 1982 Start of GSM-specification
 - o goal: pan-European digital mobile phone system with roaming
 - 1983 Start of the American AMPS (Advanced Mobile Phone System, analog)
 - 1984 CT-1 standard (Europe) for cordless telephones

- ➤ Early history of wireless communication 7
 - 1986 C-Netz in Germany
 - analog voice transmission, 450MHz, hand-over possible, digital signaling, automatic location of mobile device
 - Was in use until 2000, services: FAX, modem, X.25, e-mail, 98% coverage
 - 1991 Specification of DECT
 - Digital European Cordless Telephone (today: Digital Enhanced Cordless Telecommunications)
 - 1880-1900MHz, ~100-500m range, 120 duplex channels, 1.2Mbit/s data transmission, voice encryption, authentication, up to several 10000 user/km2, used in more than 50 countries

- ➤ Early history of wireless communication 8
 - 1992 Start of GSM
 - o in D as D1 and D2, fully digital, 900MHz, 124 channels
 - o automatic location, hand-over, cellular
 - o roaming in Europe now worldwide in more than 170 countries
 - o services: data with 9.6kbit/s, FAX, voice, ...

- ➤ Early history of wireless communication 9
 - o 1994 E-Netz in Germany
 - o GSM with 1800MHz, smaller cells
 - As Eplus in D (1997 98% coverage of the population)
 - 1996 HiperLAN (High Performance Radio Local Area Network)
 - ETSI, standardization of type 1: 5.15 5.30GHz, 23.5Mbit/s
 - recommendations for type 2 and 3 (both 5GHz) and 4 (17GHz) as wireless ATM-networks (up to 155Mbit/s)

- ➤ Early history of wireless communication 10
 - o 1997 Wireless LAN IEEE802.11
 - IEEE standard, 2.4 2.5GHz and infrared, 2Mbit/s
 - already many (proprietary) products available in the beginning
 - 1998 Specification of GSM successors
 - o for UMTS (Universal Mobile Telecommunication System) as European proposals for IMT-2000
 - o 66 satellites (+6 spare), 1.6GHz to the mobile phone

- ➤ Early history of wireless communication 11
 - 1999 Standardization of additional wireless LANs
 - o IEEE standard 802.11b, 2.4-2.5GHz, 11Mbit/s
 - Bluetooth for piconets, 2.4Ghz, <1Mbit/s
 - Decision about IMT-2000
 - o Several "members" of a "family": UMTS, cdma2000, DECT,
 - Start of WAP (Wireless Application Protocol) and imode
 - First step towards a unified Internet/mobile communication system
 - Access to many services via the mobile phone

- ➤ Early history of wireless communication 12
 - 2000 GSM with higher data rates
 - HSCSD offers up to 57,6kbit/s
 - First GPRS trials with up to 50 kbit/s (packet oriented!)
 - UMTS auctions/beauty contests
 - 2001 Start of 3G systems
 - Cdma2000 in Korea, UMTS in Europe, Foma (almost UMTS) in Japan

- ➤ Early history of wireless communication 13
 - **2007**
 - Commercial deployment of 3G becomes widespread
 - **2008**
 - 4G/LTE widely talked
 - **2009**
 - Cognitive Radio Network (CRN) widely talked
 - Advanced LTE
 - **20**13+???

ELEMENTS OF A COMMUNICATION SYSTEM

- Elements of a communication system
 - Basic concepts
 - Sources (information inputs)
 voice (audio), text, image/video and data
 - Signals

Analogue signals, Digital signals

Noises

Thermal noise, man-made noise, atmospheric noise, etc

• Sinks (information output devices) Computer screens, speakers, TV screens, etc

• Elements of a communication system (cont)

Basic components

Transmitter

- Convert Source (information) to signals
- Send converted signals to the channel (by antenna if applicable)

Channel

- Wireless: atmosphere (free space)
- Wired: coaxial cables, twisted wires, optical fibre

Receiver

- Reconvert received signals to original information
- Output the original information

- Elements of a communication system (cont)
 - Frequencies for communication

- VLF = Very Low Frequency
- LF = Low Frequency
- MF = Medium Frequency
- HF = High Frequency
- VHF = Very High Frequency
- Frequency and wave length:

$$\lambda = c/f$$

wave length λ , speed of light $c \cong 3x10^8 \text{m/s}$, frequency f

UHF = Ultra High Frequency

SHF = Super High Frequency

EHF = Extra High Frequency

UV = Ultraviolet Light

- Basic digital communications system Signals processing:
 - Source encoding/decoding
 - Reduction of redundancy
 - Encryption /decryption
 - Security and privacy
 - Channel encoding/decoding
 - Anti-interferences
 - Modulation/demodulations
 - Channel adaptation and sharing

• Energy vs Power:

The energy is the capacity to do work and the energy expended per time is called power

- Energy vs Power:
 - > The average power is the energy per unit time and
 - ➤ The bit rate is the number of bits per unit time.
 - ➤ The division removes the units of time leaving Energy per bit (E_b)

Pavg = Energy per unit time = E/T_b

Where T_b is the unit time (Bit time)

$$P_{avg} / R_b = (E/T_b)/(1/T_b) = E_b$$

To compute E_b , we divide the average signal power by its bit rate

$$E_b = \frac{P_{avg.}}{R_b}$$

APPLICATIONS

APPLICATIONS

Broadcasting

• Which involves the use of a single powerful transmitter and numerous receivers that are relatively inexpensive to build

o point-to-point communications

 In which the communication process takes place over a link between a single transmitter and a single receiver

FIGURE 1.1 Elements of a communication system.

APPLICATIONS

* Radio

- 1. Broadcasting
 - AM and FM radio
 - The voices are transmitted from broadcasting stations that operate in our neighborhood
 - Television
 - Transmits visual images and voice
- 2. Point-to-point communication
 - Satellite communication
 - Built around a satellite in geostationary orbit, relies on line-of-sight radio propagation for the operation of an uplink and a downlink

Satellite Communication System

FIGURE 1.2 Satellite communication system.

- Communication Networks
 - Consists of the interconnection of a number of routers that are made up of intelligent processors
 - Circuit switching
 - Is usually controlled by a centralized hierarchical control mechanism with knowledge of the network's entire organization

- Communication Networks
 - Packet switching
 - Store and forward
 - Any message longer than a specified size is subdivided prior to transmission into segments
 - The original message is reassembled at the destination on a packet-by-packet basis
 - Advantage: when a link has traffic to sent, the link tends to be more fully utilized

Communication Networks

FIGURE 1.3 Communication network.

- Data Networks
 - Layer
 - A process or device inside a computer system that is designed to perform a specific function
 - Open systems interconnection (OSI) reference model
 - The communications and related-connection functions are organized as a series of layers with well-defined interfaces
 - Composed of seven layers

Data Networks

FIGURE 1.4 OSI model; the acronym DLC in the middle of the figure stands for data link control.

* Internet

- The applications are carried out independently of the technology employed to construct the network
- By the same token, the network technology is capable of evolving without affecting the applications.
- Internal operation of a subnet is organized in two different ways:
 - 1. Connected manner: where the connections are called virtual circuits, in analogy with physical circuits set up in a telephone system.
 - 2. Connectionless manner: where the independent packets are called datagrams, in analogy with telegrams

Internet

FIGURE 1.5 An interconnected network of subnets.

Internet

AP: Application protocol

TCP: Transmission control protocol

UDP: User datagram protocol

IP: Internet protocol

FIGURE 1.6 Illustrating the network architecture of the Internet.

- Integration of Telephone and Internet
 - VOIP's Quality of service
 - Packet loss ratio:
 - the number of packets lost in transport across the network to the total number of packets pumped into the network
 - Connection delay:
 - The time taken for a packet of a particular host-to-host connection to transmit across the network
 - In future
 - VOIP will replace private branch exchanges (PBXs)
 - If the loading is always low and response time is fast, VOIP telephony may become mainstream and widespread

Data Storage

- The digital domain is preferred over the analog domain for the storage of audio and video signals for the following compelling reasons
 - The quality of a digitized audio/video signal, measured in terms of frequency response, linearity, and noise, is determined by the digital-to-analog conversion (DAC) process, the parameterization of which is under the designer's control.
 - Once the audio/video signal is digitized, we can make use of well-developed and powerful encoding techniques for data compression to reduce bandwidth, and error-control coding to provide protection against the possibility of making errors in the course of storage.

Data Storage

- For most practical applications, the digital storage of audio and video signals does not degrade with time.
- Continued improvements in the fabrication of integrated circuits used to build CDs and DVDs ensure the ever-increasing cost-effectiveness of these digital storage devices.

- The systems are designed to provide for the efficient utilization of the two primary communication resources
 - Transmitted power
 - The average power of the transmitted signal
 - Channel bandwidth
 - The width of the passband of the channel

- Classify communication channel
 - Power-limited channel
 - Wireless channels
 - Satellite channels
 - Deep-space links
 - Band-limited channel
 - Telephone channels
 - Television channels

- ➤ The design of a communication system boils down to a tradeoff between signal-to-noise ratio and channel bandwidth
- > Improve system performance method
 - Signal-to-noise ratio is increased to accommodate a limitation imposed on channel bandwidth
 - 2. Channel bandwidth is increased to accommodate a limitation imposed on signal-to-noise ratio

Understanding Theories of Communication Systems

Understanding Theories of Communication Systems

- Modulation Theory
 - Sinusoidal carrier wave
 - Whose amplitude, phase, or frequency is the parameter chosen for modification by the information-bearing signal
 - Periodic sequence of pulses
 - Whose amplitude, width, or position is the parameter chosen for modification by the information-bearing signal
 - The issues in modulation theory
 - Time-domain description of the modulation signal.
 - Frequency-domain description of the modulated signal
 - Detection of the original information-bearing signal and evaluation of the effect of noise on the receiver

Understanding Theories of Communication Systems

Fourier Analysis

- Fourier analysis provides the mathematical basis for evaluating the following issues
 - Frequency-domain description of a modulated signal, including its transmission bandwidth
 - Transmission of a signal through a linear system exemplified by a communication channel or filter
 - Correlation between a pair of signals

Detection Theory

- Signal-detection problem
 - The presence of noise
 - Factors such as the unknown phase-shift introduced into the carrier wave due to transmission of the sinusoidally modulated signal over the channel

Understanding Theories of Communication Systems

- > In digital communications, we look at
 - The average probability of symbol error at the receiver output
 - The issue of dealing with uncontrollable factors
 - Comparison of one digital modulation scheme against another
- Probability Theory and Random Processes
 - Probability theory for describing the behavior of randomly occurring events in mathematical terms
 - Statistical characterization of random signals and noise

- Physical channels
 - Wireless electromagnetic channel:
 - Atmosphere (free space)
 - o ionospheric channel
 - Wireline channels
 - twisted-pair wirelines
 - o coaxial cables
 - optical fiber cables
 - Underwater acoustic channels

- Common feature for distinct physical channels
 - Noises, existing always and anywhere
 - Interferences, from adjacent channels
 - Distortion of channel
- Model for communication channels
 - Reflect the most important characteristics of transmission medium, i.e., physical channels
 - Be able to conveniently use in design and analysis of communication system

Frequently used channel models

Additive noise channel

Fig.1. The additive noise channel

- *Physically,* n(t) arising from electronic components and amplifiers, both at transmitter and receiver.
- \circ Statistically, n(t) is a random process.
- \circ Gaussian noise: n(t) follows Gaussian distribution.
- When propagation happened, signal attenuation occurred

$$r(t)=as(t)+n(t)$$
, Where a represents the attenuation factor

It is a predominant model due to its mathematical tractability

Linear filter channel

Fig.2. The linear time-invariant (LTI) filter channel with additive noise channel

- Filter, ensuring that transmitted signal do not exceed specified bandwidth limitation
- \circ h(t) is the impulse response of the linear filter

$$r(t) = s(t) * h(t) + n(t) = \int_{-\infty}^{\infty} h(\tau)s(t-\tau)d\tau + n(t)$$

✓ It is the most common used model in theory or practical applications

Linear time-variant filter channel

Fig.2. The linear time-variant (LTV) filter channel with additive noise channel

- Suitable for the case of physical channels such as under water acoustic channel and ionospheric radio channels.
- $h(\tau;t)$ is the response of the channel at time t, due to an impulse applied at time $t-\tau$
- τ represents the "age" (elapsed time) variable

It is the most common used model in theory or practical applications

Multipath channel

- It's a special case of LTV
- Widely used in wireless communications

Fig.3. Multipath channel model

$$r(t) = \sum_{k=1}^{L} a_k(t) s(\tau - \tau_k) + n(t)$$

$$\begin{cases} L & \text{is the number of multipath propagation paths} \\ \{a_k(t)\} & \text{is the possibly time-variant attenuation factors} \end{cases}$$

$$h(\tau;t) = \sum_{k=1}^{L} a_k(t) \delta(\tau - \tau_k)$$

$$\begin{cases} \{\tau_k\} & \text{is the possibly delay attenuation factors} \end{cases}$$

Let's summarize today's lecture !!!

WHAT WE HAVE LEARNT TODAY !!!

- An brief introduction to the course
- What we will learn in this course, *i.e.*, the roadmap of the course
- General pre-requirements for learning this course
- Block diagram of communication systems and its basic components, esp. for digital communication systems
- Brief history of communications
- Applications of communication
- Primary resources and operational requirements
- Understanding theories of communication systems
- Channel models for communication systems

WHAT IS THE NEXT?

• Frequency domain analysis of signals and systems---Chapter 2 (totally, 2-3 lectures)

We will learn and review:

- Fourier series (Section 2.1)
- Fourier transforms (Section 2.2)

WHAT YOU NEED TO DO AFTER LECTURE?

- Review and self-study Go through the Chapter 1 (at least 1 times)
- Homework
- Preparationpp.24-40, of textbook

Thank you for attention!!!