Coherent phase shift keying

 In coherent phase shift keying different phase modulation schemes will be covered i.e. binary PSK, quadrature phase shift keying and M-ary PSK

Binary Phase shift keying

In a coherent PSK system the pair of signals $s_1(t)$ and $s_2(t)$ are used to represent binary logics 1 and 0 respectively

$$s_1(t) = \sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t)$$

$$s_2(t) = \sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t + \pi) = -\sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t)$$

Binary Phase shift keying

- Where $0 \le t \le T_b$, and E_b is the transmitted signal energy per bit
- The carrier frequency is selected such that $f_c = \frac{n}{T_b}$ so that each bit contains an integral number of cycles
- From the pair of symbols $s_1(t)$ and $s_2(t)$ we can see only one basis function (carrier) is needed to represent both $s_1(t)$ and $s_2(t)$

Binary Phase shift keying

The basis function is given by

$$\phi_1(t) = \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t) \quad 0 \le t \le T_b$$

- Now we can rewrite
- $s_1(t) = \sqrt{E_b}\phi_1(t)$ and $s_2(t) = -\sqrt{E_b}\phi_1(t)$ on the interval $0 \le t \le T_b$

Signal constellation for binary Phase shift keying

- In order to draw the constellation diagram we need to find the projection of each transmitted symbol on the basis function
- The projection of the logic (1); $S_1(t)$; is given by $S_{11} = \int_0^{T_b} S_1(t) \phi_1(t) dt = +\sqrt{E_b}$
- The projection of the second symbol $S_2(t)$ on the basis function is given by $S_{21} = \int_0^{T_b} S_2(t) \phi_1(t) dt = -\sqrt{E_b}$

Signal constellation for binary Phase shift keying

 If we plot the transmitted symbols for BPSK we may got the following constellation diagram

- In order to compute the error probability of BPSK we partition the constellation diagram of the BPSK (see slide 6) into two regions
- If the received symbol falls in region Z₁, the receiver decides in favor of symbol S₁ (logic 1) was received
- If the received symbol falls in region Z_2 , the receiver decides in favor of symbol S_2 (logic 0) was received

Error probability of BPSK-Receiver model

• The receiver in the pass band can be modeled as shown

The received signal vector x(t) = s (t) + n(t)

• The observable element x₁ (symbol zero was sent and the detected sample was read in zone 1) is given by

$$x_{1} = \int_{0}^{T_{b}} x_{1}(t)\phi_{1}(t)dt$$

$$x_{1} = \int_{0}^{T_{b}} (s_{2}(t) + n(t))\phi_{1}(t)dt$$

$$x_{1} = \int_{0}^{T_{b}} s_{2}(t)\phi_{1}(t)dt = S_{21} = -\sqrt{E_{b}}$$

To calculate the probability of error that symbol 0 was sent and the receiver detect 1 mistakenly in the presence of AWGN with $\sigma^2_{\chi} = \frac{N_0}{2}$, we need to find the conditional probability density of the random variable x_1 , given that symbol 0, $s_2(t)$, was transmitted as shown below $f_{X_1}(x_1|0) = \frac{1}{\sqrt{\pi N_0}} \exp \left[-\frac{1}{N_0} (x_1 - s_{21})^2 \right]$

 $= \frac{1}{\sqrt{\pi N_0}} \exp \left[-\frac{1}{N_0} (x_1 + \sqrt{E_b})^2 \right]$

 The conditional probability of the receiver deciding in favor of symbol 1, given that symbol zero was transmitted is given by

$$p_{10} = \int_0^\infty f_{X_1}(x_1|0) dx_1$$

$$= \frac{1}{\sqrt{\pi N_0}} \int_0^\infty \exp\left[-\frac{1}{N_0} (x_1 + \sqrt{E_b})^2\right] dx_1$$

By letting

$$z = \frac{1}{\sqrt{N_0}} (x_1 + \sqrt{E_b})$$

ullet the above integral for p_{10} can be rewritten

as

$$p_{10} = \frac{1}{\sqrt{\pi}} \int_{\sqrt{E_b/N_0}}^{\infty} \exp(-z^2) dz$$
$$= \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right)$$

Error probability of error

- In similar manner we can find probability of error that symbol 1 was sent and the receiver detect 0 mistakenly
- The average probability as we did in the baseband can be computed as

$$P_e = rac{1}{2} \operatorname{erfc}\!\left(\sqrt{rac{E_b}{N_0}}
ight)$$

 This average probability is equivalent to the bit error rate

Generation of BPSK signals

- To generate a binary PSK signal we need to present the binary sequence in polar form
- The amplitude of logic 1 is $+\sqrt{E_b}$ whereas the amplitude of logic 0 is $-\sqrt{E_b}$
- This signal transmission encoding is performed by using polar NRZ encoder

Generation of BPSK signals

 The resulting binary wave and the carrier (basis function) are applied to product modulator as shown below

Detection of BPSK signals

• To detect the original binary sequence we apply the received noisy PSK signal x(t) = s(t) + n(t) to a correlator followed by a decision device as shown below

The correlator works as a matched filter

Power spectra of binary PSK signals

- The power spectral density of the binary PSK signal can be found as described for the bipolar NRZ signaling (see problem 3.11 (a) Haykin)
- This assumption is valid because the BPSK is generated by using bipolar NRZ signaling

Power spectra of binary PSK signals

The power spectral density can be found as

$$S_B(f) = \frac{2E_b \sin^2(\pi T_b f)}{(\pi T_b f)^2}$$
$$= 2E_b \operatorname{sinc}^2(T_b f)$$

Bandwidth of the BPSK modulation scheme

Since the BPSK modulation is similar to DSB_SC modulation, the bandwidth required for the transmission of BPSK signal is given by

$$BW = 2f_m$$

- Where f_m is the maximum frequency content of the BPSK signal
- If the bandwidth is defined as the null to null for the sinc function in slide 18, it follows that $f_m = R_b$, therefore the bandwidth for the BPSK is given by

$$BW = 2R_b = \frac{2}{T_b}$$

Quadrature phase shift keying QPSK

 In quadrature phase shift keying 4 symbols are sent as indicated by the equation

$$s_{i}(t) = \begin{cases} \sqrt{\frac{2E}{T}} \cos\left[2\pi f_{c}t + (2i - 1)\frac{\pi}{4}\right] & 0 \le t \le T \\ 0 & elsewhere \end{cases}$$

- Where i = 1, 2, 3, 4; E is the transmitted signal energy per symbol, and T is the symbol duration
- The carrier frequency is $\frac{n_c}{T}$ for some fixed integer n_c

Signal space diagram of QPSK

 If we expand the QPSK equation using the trigonometric identities we got the following equation

$$\begin{aligned} s_i(t) &= \sqrt{E} \cos \left[(2i - 1) \frac{\pi}{4} \right] \sqrt{\frac{2}{T}} \cos (2\pi f_c t) - \sqrt{E} \sin \left[(2i - 1) \frac{\pi}{4} \right] \sqrt{\frac{2}{T}} \sin (2\pi f_c t) \\ &= \sqrt{E} \cos \left[(2i - 1) \frac{\pi}{4} \right] \phi_1(t) - \sqrt{E} \sin \left[(2i - 1) \frac{\pi}{4} \right] \phi_2(t); \quad 0 \le t < T \end{aligned}$$

Which we can write in vector format as

$$\mathbf{s}_{i} = \begin{bmatrix} \sqrt{E}\cos(2i-1)\frac{\pi}{4} \\ -\sqrt{E}\sin(2i-1)\frac{\pi}{4} \end{bmatrix}$$

Signal space diagram of QPSK

There are four message points defined by

$$\mathbf{s}_{i} = \begin{bmatrix} \sqrt{E} \cos\left((2i-1)\frac{\pi}{4}\right) \\ -\sqrt{E} \sin\left((2i-1)\frac{\pi}{4}\right) \end{bmatrix}, \quad i = 1, 2, 3, 4$$

According to this equation, a QPSK has a two-dimensional signal constellation (i.e. N = 2 or two basis functions)

Detailed message points for QPSK

i	Input Dibit	Phase of QPSK	Coordinate of Message point	
		signalin g	S _{i1}	s _{i2}
1	10	$\pi/4$	$\sqrt{E/2}$	$\sqrt{-\sqrt{E/2}}$
2	00	$3\pi/4$	$-\sqrt{E/2}$	$-\sqrt{E/2}$
3	01	$5\pi/4$	$\sqrt{E/2}$	$\sqrt{E/2}$
4	11	$7\pi/4$	$\sqrt{E/2}$	$\sqrt{E/2}$

Signal space diagram of QPSK

Signal space diagram of QPSK with decision zones

• The constellation diagram may appear as shown below ϕ_2

Example

- Sketch the QPSK waveform resulting from the input binary sequence 01101000
- solution

In coherent QPSK, the received signal x(t) is defined by

$$x(t) = s_i(t) + w(t)$$

$$\begin{cases} 0 \le t \le T \\ i = 1, 2, 3, 4 \end{cases}$$

• Where w(t) is the sample function of AWGN with zero mean and power spectral density of $\sigma^2_x = \frac{N_0}{2}$

Error probability decision rule

- If the received signal point associated with the observation vector x falls inside region Z₁, the receiver decide that s₁(t) was transmitted
- Similarly the receiver decides that $s_2(t)$ was transmitted if x falls in region Z_2
- The same rule is applied for $s_3(t)$ and $s_4(t)$

- We can treat QPSK as the combination of 2 independent BPSK over the interval $T = 2T_b$
- since the first bit is transmitted by φ₁ and the second bit is transmitted by φ₂
- Probability of error for each channel is given by $P' = \frac{1}{2} \operatorname{erfc} \left(\frac{d_{12}}{2\sqrt{N_0}} \right) = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{E}{2N_0}} \right)$

- If symbol is to be received correctly both bits must be received correctly
- Hence, the average probability of correct decision is given by $P_c = (1-P')^2$
- Which gives the probability of errors equal

to
$$P_e = 1 - P_C = \operatorname{erfc}\left(\sqrt{\frac{E}{2N_0}}\right) - \frac{1}{4}\operatorname{erfc}^2\left(\sqrt{\frac{E}{2N_0}}\right)$$

$$\approx \operatorname{erfc}\left(\sqrt{\frac{E}{2N_0}}\right)$$

- Since one symbol of QPSK consists of two bits, we have E = 2Eb $P_e(persymbol) \approx erfc \left(\sqrt{\frac{E_b}{N_0}} \right)$
- The above probability is the error probability per symbol
- With gray encoding the average probability of error per bit

$$P_e(\text{per bit}) = \frac{1}{2} P_e(\text{per symbol}) \approx \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right)$$

Which is exactly the same as BPSK

Error probability of QPSK summery

• We can state that a coherent QPSK system achieves the same average probability of bit error as a coherent PSK system for the same bit rate and the same $\frac{E_b}{N_0}$ but uses only half the channel bandwidth

Generation and detection of QPSK

Block
 diagrams of
 (a) QPSK
 transmitter
 and (b)
 coherent
 QPSK
 receiver.

Power spectra of QPSK

Bandwidth of QPSK

 The bandwidth of a QPSK modulated signal is given by

$$BW = \frac{2}{T} = \frac{2}{\log_2 M T_b}$$

Since M is 4, then the bandwidth QPSK signal is given by

$$BW = \frac{2}{\log_2 4T_b} = R_b$$

M-array PSK

• At a moment, there are M possible symbol values being sent for M different phase values, $\theta_i = 2(i-1)\pi/M$

$$s_i(t) = \sqrt{\frac{2E}{T}} \cos\left(2\pi f_c t + \frac{2\pi}{M}(i-1)\right), \qquad i = 1, 2, \dots, M$$

- Signal-space diagram for octa phase-shift keying (i.e., M = 8). The decision boundaries are shown as dashed lines.
- Signal-space diagram illustrating the application of the union bound for octa phase shift keying.

Probability of errors

$$\therefore d_{12} = d_{18} = 2\sqrt{E}\sin(\pi/M)$$

$$P_e \approx \operatorname{erfc}\left(\sqrt{\frac{E}{N_0}}\sin(\pi/M)\right); \quad M \ge 4$$

M-ary PSK

Power Spectra (M-array)

$$S_{PSK}(f) = 2E\operatorname{sinc}^{2}(Tf)$$

$$= 2E_{b} \log_{2} M \operatorname{sinc}^{2}(T_{b} f \log_{2} M)$$

■ M=2, we have

$$S_{BPSK}(f) = 2E_b \operatorname{sinc}^2(T_b f)$$

Power spectra of *M*-ary PSK signals for M = 2, 4, 8.

- Bandwidth efficiency:
 - We only consider the bandwidth of the main lobe (or null-to-null bandwidth)

$$B = \frac{2}{T} = \frac{2}{T_b \log_2 M} = \frac{2R_b}{\log_2 M}$$

Bandwidth efficiency of M-ary PSK is given by

$$\rho = \frac{R_b}{B} = \frac{R_b}{2R_b} \log_2 M = 0.5 \log_2 M$$

M-ary QAM

- QAM = Quadrature Amplitude Modulation
- Both Amplitude and phase of carrier change according to the transmitted symbol, m_i

$$s_i(t) = \sqrt{\frac{2E_0}{T}} a_i \cos(2\pi f_c t) - \sqrt{\frac{2E_0}{T}} b_i \sin(2\pi f_c t); \quad 0 < t \le T$$

where a_i and b_i are integers, E_0 is the energy of the signal with the lowest amplitude

M-ary QAM

Again, we have

$$\phi_1(t) = \sqrt{\frac{2}{T}} \cos 2\pi f_c t \quad ; 0 < t \le T$$

$$\phi_2(t) = \sqrt{\frac{2}{T}} \sin 2\pi f_c t \quad ; 0 < t \le T$$

as the basis functions

There are two QAM constellations, square constellation and rectangular

M-ary QAM

- QAM square Constellation
 - Having even number of bits per symbol, denoted by 2n
 - M=L x L possible values
 - Denoting $L = \sqrt{M}$

16-QAM

- Calculation of Probability of errors
 - Since both basis functions are orthogonal, we can treat the 16-QAM as combination of two 4-ary PAM systems.
 - For each system, the probability of error is given by

$$P_{e}' = \left(1 - \frac{1}{L}\right) erfc \left(\frac{d}{2\sqrt{N_0}}\right) = \left(1 - \frac{1}{\sqrt{M}}\right) erfc \left(\sqrt{\frac{E_0}{N_0}}\right)$$

16-QAM

 A symbol will be received correctly if data transmitted on both 4-ary PAM systems are received correctly. Hence, we have

$$P_c(symbol) = (1 - P'_e)^2$$

Probability of symbol error is given by

$$P_e(symbol) = 1 - P_c(symbol) = 1 - (1 - P'_e)^2$$
$$= 1 - 1 + 2P'_e - (P'_e)^2 \approx 2P'_e$$

16-QAM

Hence, we have

$$P_e(symbol) = 2\left(1 - \frac{1}{\sqrt{M}}\right) erfc\left(\sqrt{\frac{E_0}{N_0}}\right)$$

But because average energy is given by

$$E_{av} = 2 \left[\frac{2E_0}{L} \sum_{i=1}^{L/2} (2i-1)^2 \right] = \frac{2(M-1)E_0}{3}$$

We have

$$P_e(symbol) = 2\left(1 - \frac{1}{\sqrt{M}}\right)erfc\left(\sqrt{\frac{3E_{av}}{2(M-1)N_0}}\right)$$